Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Med Chem ; 65(4): 2880-2904, 2022 02 24.
Article in English | MEDLINE | ID: covidwho-1705973

ABSTRACT

Starting from the MLPCN probe compound ML300, a structure-based optimization campaign was initiated against the recent severe acute respiratory syndrome coronavirus (SARS-CoV-2) main protease (3CLpro). X-ray structures of SARS-CoV-1 and SARS-CoV-2 3CLpro enzymes in complex with multiple ML300-based inhibitors, including the original probe ML300, were obtained and proved instrumental in guiding chemistry toward probe compound 41 (CCF0058981). The disclosed inhibitors utilize a noncovalent mode of action and complex in a noncanonical binding mode not observed by peptidic 3CLpro inhibitors. In vitro DMPK profiling highlights key areas where further optimization in the series is required to obtain useful in vivo probes. Antiviral activity was established using a SARS-CoV-2-infected Vero E6 cell viability assay and a plaque formation assay. Compound 41 demonstrates nanomolar activity in these respective assays, comparable in potency to remdesivir. These findings have implications for antiviral development to combat current and future SARS-like zoonotic coronavirus outbreaks.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Cysteine Proteinase Inhibitors/pharmacology , Peptidomimetics/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , COVID-19/metabolism , Chlorocebus aethiops , Coronavirus 3C Proteases/isolation & purification , Coronavirus 3C Proteases/metabolism , Crystallography, X-Ray , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/chemistry , Dose-Response Relationship, Drug , Glutamine/chemistry , Glutamine/pharmacology , Humans , Ketones/chemistry , Ketones/pharmacology , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Peptidomimetics/chemistry , SARS-CoV-2/enzymology , Vero Cells , Virus Replication/drug effects , COVID-19 Drug Treatment
2.
J Biol Chem ; 298(4): 101739, 2022 04.
Article in English | MEDLINE | ID: covidwho-1693313

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as a global threat to human health has highlighted the need for the development of novel therapies targeting current and emerging coronaviruses with pandemic potential. The coronavirus main protease (Mpro, also called 3CLpro) is a validated drug target against coronaviruses and has been heavily studied since the emergence of SARS-CoV-2 in late 2019. Here, we report the biophysical and enzymatic characterization of native Mpro, then characterize the steady-state kinetics of several commonly used FRET substrates, fluorogenic substrates, and six of the 11 reported SARS-CoV-2 polyprotein cleavage sequences. We then assessed the suitability of these substrates for high-throughput screening. Guided by our assessment of these substrates, we developed an improved 5-carboxyfluorescein-based FRET substrate, which is better suited for high-throughput screening and is less susceptible to interference and false positives than existing substrates. This study provides a useful framework for the design of coronavirus Mpro enzyme assays to facilitate the discovery and development of therapies targeting Mpro.


Subject(s)
Coronavirus 3C Proteases , Enzyme Assays , Fluoresceins , SARS-CoV-2 , Antiviral Agents/chemistry , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/isolation & purification , Coronavirus 3C Proteases/metabolism , Enzyme Assays/methods , Fluoresceins/chemistry , Fluoresceins/metabolism , High-Throughput Screening Assays , Humans , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , COVID-19 Drug Treatment
3.
J Med Chem ; 65(4): 2866-2879, 2022 02 24.
Article in English | MEDLINE | ID: covidwho-1440451

ABSTRACT

The emergence of a new coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), presents an urgent public health crisis. Without available targeted therapies, treatment options remain limited for COVID-19 patients. Using medicinal chemistry and rational drug design strategies, we identify a 2-phenyl-1,2-benzoselenazol-3-one class of compounds targeting the SARS-CoV-2 main protease (Mpro). FRET-based screening against recombinant SARS-CoV-2 Mpro identified six compounds that inhibit proteolysis with nanomolar IC50 values. Preincubation dilution experiments and molecular docking determined that the inhibition of SARS-CoV-2 Mpro can occur by either covalent or noncovalent mechanisms, and lead E04 was determined to inhibit Mpro competitively. Lead E24 inhibited viral replication with a nanomolar EC50 value (844 nM) in SARS-CoV-2-infected Vero E6 cells and was further confirmed to impair SARS-CoV-2 replication in human lung epithelial cells and human-induced pluripotent stem cell-derived 3D lung organoids. Altogether, these studies provide a structural framework and mechanism of Mpro inhibition that should facilitate the design of future COVID-19 treatments.


Subject(s)
Antiviral Agents/pharmacology , Benzothiazoles/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Cysteine Proteinase Inhibitors/pharmacology , Drug Discovery , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Benzothiazoles/chemistry , COVID-19/metabolism , Chlorocebus aethiops , Coronavirus 3C Proteases/isolation & purification , Coronavirus 3C Proteases/metabolism , Crystallography, X-Ray , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/chemistry , Dose-Response Relationship, Drug , Fluorescence Resonance Energy Transfer , Humans , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , SARS-CoV-2/enzymology , Vero Cells , Virus Replication/drug effects , COVID-19 Drug Treatment
4.
Biosens Bioelectron ; 194: 113579, 2021 Dec 15.
Article in English | MEDLINE | ID: covidwho-1370452

ABSTRACT

The poor situational awareness about the spreading of the virus especially in the underdeveloped regions calls for novel virus assays of low cost and simple operation. Currently, such assays are exclusively restricted to nucleic acid detection. In this investigation, a virus protein serum assay has been proposed in a one-step and reagent-less route. Specifically, in this assay, the main protease of the virus is targeted by a short probe mimicking its substrate. While the probe-protein interaction brings them together, a fluorescent thiol targeting molecule reacts with the free thiol groups on the target protein near the probe, generating a fluorescence signal proportional to the concentration of the target. This induces an electroactive 2D peptide nano-network on the sensing surface only in the presence of the target protein. The sensitivity of the method is enhanced through potential electrochemical scanning during incubation with serum samples. The successful detection of the virus marker protein in the serum of the infected patients encourages further development of incorporation of this method into clinical practice.


Subject(s)
Biosensing Techniques , COVID-19 , Coronavirus 3C Proteases/isolation & purification , Blood Proteins , COVID-19/diagnosis , Coronavirus 3C Proteases/blood , Humans , SARS-CoV-2 , Sulfhydryl Compounds
5.
J Med Chem ; 65(4): 2926-2939, 2022 02 24.
Article in English | MEDLINE | ID: covidwho-1327181

ABSTRACT

The novel coronavirus, SARS-CoV-2, has been identified as the causative agent for the current coronavirus disease (COVID-19) pandemic. 3CL protease (3CLpro) plays a pivotal role in the processing of viral polyproteins. We report peptidomimetic compounds with a unique benzothiazolyl ketone as a warhead group, which display potent activity against SARS-CoV-2 3CLpro. The most potent inhibitor YH-53 can strongly block the SARS-CoV-2 replication. X-ray structural analysis revealed that YH-53 establishes multiple hydrogen bond interactions with backbone amino acids and a covalent bond with the active site of 3CLpro. Further results from computational and experimental studies, including an in vitro absorption, distribution, metabolism, and excretion profile, in vivo pharmacokinetics, and metabolic analysis of YH-53 suggest that it has a high potential as a lead candidate to compete with COVID-19.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Cysteine Proteinase Inhibitors/pharmacology , Ketones/pharmacology , Peptidomimetics/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , COVID-19/metabolism , Chlorocebus aethiops , Coronavirus 3C Proteases/isolation & purification , Coronavirus 3C Proteases/metabolism , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/chemistry , Humans , Ketones/chemistry , Male , Microbial Sensitivity Tests , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Models, Molecular , Molecular Conformation , Peptidomimetics/chemical synthesis , Peptidomimetics/chemistry , Rats , Rats, Wistar , SARS-CoV-2/enzymology , Vero Cells , COVID-19 Drug Treatment
6.
Biochem J ; 478(13): 2499-2515, 2021 07 16.
Article in English | MEDLINE | ID: covidwho-1291175

ABSTRACT

The coronavirus 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), spread around the world with unprecedented health and socio-economic effects for the global population. While different vaccines are now being made available, very few antiviral drugs have been approved. The main viral protease (nsp5) of SARS-CoV-2 provides an excellent target for antivirals, due to its essential and conserved function in the viral replication cycle. We have expressed, purified and developed assays for nsp5 protease activity. We screened the nsp5 protease against a custom chemical library of over 5000 characterised pharmaceuticals. We identified calpain inhibitor I and three different peptidyl fluoromethylketones (FMK) as inhibitors of nsp5 activity in vitro, with IC50 values in the low micromolar range. By altering the sequence of our peptidomimetic FMK inhibitors to better mimic the substrate sequence of nsp5, we generated an inhibitor with a subnanomolar IC50. Calpain inhibitor I inhibited viral infection in monkey-derived Vero E6 cells, with an EC50 in the low micromolar range. The most potent and commercially available peptidyl-FMK compound inhibited viral growth in Vero E6 cells to some extent, while our custom peptidyl FMK inhibitor offered a marked antiviral improvement.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Drug Evaluation, Preclinical , SARS-CoV-2/enzymology , Small Molecule Libraries/pharmacology , Amino Acid Chloromethyl Ketones/pharmacology , Animals , Azoles/pharmacology , Chlorocebus aethiops , Coronavirus 3C Proteases/genetics , Coronavirus 3C Proteases/isolation & purification , Coronavirus 3C Proteases/metabolism , Enzyme Assays , Fluorescence Resonance Energy Transfer , High-Throughput Screening Assays , Isoindoles , Leupeptins/pharmacology , Organoselenium Compounds/pharmacology , Peptidomimetics , RNA-Binding Proteins/metabolism , Reproducibility of Results , SARS-CoV-2/drug effects , Small Molecule Libraries/chemistry , Vero Cells , Viral Nonstructural Proteins/metabolism
7.
J Med Chem ; 65(4): 2848-2865, 2022 02 24.
Article in English | MEDLINE | ID: covidwho-1199254

ABSTRACT

The main protease (Mpro) of SARS-CoV-2 is a validated antiviral drug target. Several Mpro inhibitors have been reported with potent enzymatic inhibition and cellular antiviral activity, including GC376, boceprevir, calpain inhibitors II, and XII, with each containing a reactive warhead that covalently modifies the catalytic Cys145. Coupling structure-based drug design with the one-pot Ugi four-component reaction, we discovered one of the most potent noncovalent inhibitors, 23R (Jun8-76-3A) that is structurally distinct from the canonical Mpro inhibitor GC376. Significantly, 23R is highly selective compared with covalent inhibitors such as GC376, especially toward host proteases. The cocrystal structure of SARS-CoV-2 Mpro with 23R revealed a previously unexplored binding site located in between the S2 and S4 pockets. Overall, this study discovered 23R, one of the most potent and selective noncovalent SARS-CoV-2 Mpro inhibitors reported to date, and a novel binding pocket in Mpro that can be explored for inhibitor design.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Cysteine Proteinase Inhibitors/pharmacology , Drug Design , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , COVID-19/metabolism , Chlorocebus aethiops , Coronavirus 3C Proteases/isolation & purification , Coronavirus 3C Proteases/metabolism , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Proline/analogs & derivatives , Proline/chemical synthesis , Proline/chemistry , Proline/pharmacology , Pyrrolidines/chemical synthesis , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , SARS-CoV-2/enzymology , Sulfonic Acids/chemical synthesis , Sulfonic Acids/chemistry , Sulfonic Acids/pharmacology , Vero Cells , COVID-19 Drug Treatment
8.
J Med Chem ; 65(4): 2794-2808, 2022 02 24.
Article in English | MEDLINE | ID: covidwho-1192017

ABSTRACT

A novel series of peptidomimetic aldehydes was designed and synthesized to target 3C protease (3Cpro) of enterovirus 71 (EV71). Most of the compounds exhibited high antiviral activity, and among them, compound 18p demonstrated potent enzyme inhibitory activity and broad-spectrum antiviral activity on a panel of enteroviruses and rhinoviruses. The crystal structure of EV71 3Cpro in complex with 18p determined at a resolution of 1.2 Å revealed that 18p covalently linked to the catalytic Cys147 with an aldehyde group. In addition, these compounds also exhibited good inhibitory activity against the 3CLpro and the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), especially compound 18p (IC50 = 0.034 µM, EC50 = 0.29 µM). According to our previous work, these compounds have no reasons for concern regarding acute toxicity. Compared with AG7088, compound 18p also exhibited good pharmacokinetic properties and more potent anticoronavirus activity, making it an excellent lead for further development.


Subject(s)
Aldehydes/pharmacology , Antiviral Agents/pharmacology , Cysteine Proteinase Inhibitors/pharmacology , Enterovirus/drug effects , Peptidomimetics/pharmacology , SARS-CoV-2/drug effects , Aldehydes/chemical synthesis , Aldehydes/chemistry , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cell Line , Chlorocebus aethiops , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/isolation & purification , Coronavirus 3C Proteases/metabolism , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/chemistry , Dose-Response Relationship, Drug , Drug Design , Humans , Male , Mice , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Peptidomimetics/chemical synthesis , Peptidomimetics/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL